Christ, 1965; Holland, 1959, 1965; Mel'nik, 1964; Yui, 1966). The stability field of siderite is considered to be bounded by six possible reactions (table 1, eqs 3-8).

Reactions (7) and (8) can be stable only at $f_{\rm O_2}$ values below that of the graphite buffer; they lie entirely within the condensed region and do not involve ${\rm CO_2}$ or ${\rm CO}$ (French and Eugster, 1965). Calculated stability fields of siderite, bounded by reactions (3), (4), and (6), have been presented by Garrels (1960) for 298°K and by Holland (1959) for 300° to 600°K. Neither author considered possible reactions involving siderite and graphite.

In the present study, $\Delta G^{\circ}_{f,T}$ data for siderite were calculated from thermodynamic data (Kelley and Anderson, 1935). Values of ΔG°_{T} for each reaction were calculated using values for the oxides tabulated by Coughlin (1954). The calculated values of ΔG°_{T} are essentially linear functions of T from 298° to 1200°K (table 1). Uncertainties in the values were calculated from the stated uncertainties of Coughlin (1954) for the oxide data, and a 1 percent uncertainty was assumed for the siderite data; the total uncertainty in ΔG°_{T} is thus only a minimum value. Data on the other physical properties of the phases involved are summarized elsewhere (Eugster and Wones, 1962; French, ms, 1970).

Values of ΔS° and ΔH° for each reaction (table 1) were calculated from the free energy data, using the relations:

$$\left(\frac{\partial \Delta G^{\circ}}{\partial T}\right)_{P} = -\Delta S^{\circ} \tag{9}$$

$$\left(\begin{array}{cc}
\frac{\partial & \Delta G^{\circ}}{T} \\
\frac{\partial & -1}{T}
\end{array}\right)_{P} = \Delta H^{\circ} \tag{10}$$

(Lewis and others, 1961, p. 165). ΔS° and ΔH° for all reactions are virtually independent of T over the temperature range 298° to 1200°K.

The equilibrium constants K(T) for each reaction were calculated from the relation:

$$\Delta G^{\circ}_{T} = -2.303 \text{ RT log K(T)}$$

$$\log K(T) = \frac{-\Delta G^{\circ}}{2.303 \text{ RT}}$$
(11)

and are given in table 1.

Values of equilibrium f_{O_2} as a function of T can then be calculated from the equilibrium constant for any specified total pressure. In those reactions in which CO_2 also participates, it is reasonable to assume that $P_F = P_{CO_2}$ for temperatures below 600°C and f_{O_2} values above those of the graphite buffer (French and Eugster, 1965). Values of f_{CO_2} were cal-

Reaction	ΔG°_{298} (cal)	$\Delta G^{\circ}_{\mathbf{T}}$ (cal)	$\log K_i(T)$
3. Siderite $+ O_2 = \text{hematite} + CO_2$ $2 \text{ FeCO}_3 + \frac{1}{2} O_2 = \text{Fe}_2 O_3 + 2 \text{ CO}_2$ $\log K_3(T) = 2 \log f_{CO_2} - \frac{1}{2} \log f_{O_2}$	$-43,850 \pm 4,500$	- 26,500 - 54.29 T	+ 6012/T + 11.87
4. Siderite $+ O_2 = \text{magnetite} + CO_2$ $3 \text{ FeCO}_3 + \frac{1}{2} O_2 = \text{Fe}_3 O_4 + 3 \text{ CO}_2$ $\log K_4(T) = 3 \log f_{CO_2} - \frac{1}{2} \log f_{O_2}$	$-42,870 \pm 6,200$	- 13,900 - 96.44 T	+ 3039/T + 21.08
5. Siderite $+ O_2 =$ wüstite $+ CO_2$ $0.947 \text{ FeCO}_3 + 0.026 O_2 = \text{Fe}_{0.947} O + 0.947 CO_2$ $\log K_5(T) = 0.947 \log f_{CO_2} - 0.026 \log f_{O_2}$	$+$ 4,490 \pm 1,800	$+ 16,300 - 39.6 \mathrm{T}$	- 3564/T + 8.66
6. Siderite = iron + CO_2 + O_2 $FeCO_3$ = Fe + CO_2 + $\frac{1}{2}$ O_2 $log K_6(T) = log f_{CO_2}$ + $\frac{1}{2}$ $log f_{O_2}$	$+ 66,780 \pm 1,700$	+ 84,600 - 59.65 T	-18,495/T + 13.04
7. Siderite = magnetite + graphite + O_2 $3 \text{ FeCO}_3 = \text{Fe}_3 O_4 + 3 \text{ C} + 5/2 O_2$ $\log K_7(T) = 5/2 \log f_{O_2}$	$+239,910 \pm 6,100$	+268,300 - 91.69 T	-58,656/T + 20.05
8. Siderite = iron + graphite + O_2 $FeCO_3 = Fe + C + 3/2 O_2$ $log K_s(T) = 3/2 log f_{O_2}$	$+$ 161,040 \pm 1,600	+ 178,700 $-$ 58.97 T	-39,068/T + 12.89